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Emerging infectious diseases are among the main threats to conservation of biological diversity. A crucial
task facing epidemiologists is to predict the vulnerability of populations of endangered animals to disease
outbreaks. In this context, the network structure of social interactions within animal populations may affect
disease spreading. However, endangered animal populations are often small and to investigate the dynamics of
small networks is a difficult task. Using network theory, we show that the social structure of an endangered
population of mammal-eating killer whales is vulnerable to disease outbreaks. This feature was found to be a
consequence of the combined effects of the topology and strength of social links among individuals. Our
results uncover a serious challenge for conservation of the species and its ecosystem. In addition, this study
shows that the network approach can be useful to study dynamical processes in very small networks.
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INTRODUCTION

Emerging infectious diseases are among the main threats
to endangered populations and ecosystems �1,2�. Disease
outbreaks are likely to promote ecological replacement be-
tween species �3�, cause local extinction of animal and plant
populations, and contribute to the global extinction of some
species such as the thylacine �Thylacinus cynocephalus�
�1,4�. In this context, a particular problem for conservation
strategies is that an epidemic only becomes apparent after it
has reached extreme levels �4�. Therefore, predicting the vul-
nerability of populations to epizootics can help to prevent the
local extinction of endangered populations �1�.

In social mammals, disease dynamics is affected by pat-
terns of contact among individuals �5�. Recently, studies fo-
cusing on human populations showed that by using a net-
work theory framework we can infer the consequences of
social structure on disease dynamics �6–8�. The structure of
this network of contacts can influence the emergence of epi-
demics and therefore the viability of these populations. In
spite of the importance of network structure for disease dy-
namics in human societies, no previous study investigates the
implications of this structure to disease outbreaks in animal
populations. In this context, animal populations of endan-
gered mammals provide a challenge to network approach,
since these populations are often very small and how to in-
vestigate small networks has been pointed out as one of the
leading questions in network research �9�.

Here, we used a network approach �10,11� to characterize
the complex social organization of the endangered mammal-

eating killer whales �12� and infer their vulnerability to dis-
ease epidemics. Mammal-eating killer whales prey upon ma-
rine mammals, and can potentially affect the structure of the
coastal ecological community �12,13�. Currently, the re-
corded population of mammal-eating killer whales is in the
low hundreds of individuals �14�. Levels of polychlorinated
biphenyls �PCBs� in these whales are threateningly high, in-
creasing the vulnerability of individuals to diseases �15� and
they are exposed to a wide variety of pathogens �16�. We
studied the vulnerability of a population of mammal-eating
killer whales to epidemics using a generalized disease dy-
namic model to investigate if the killer whale social network
is vulnerable to disease outbreaks and to understand the
structural basis of the recorded vulnerability.

DATA COLLECTION

Our study is based on systematic observations of social
interactions among killer whales around the southern tip of
Vancouver Island, British Columbia, Canada and in adjacent
areas of Washington State, U.S.A., from 1984–1996. Most
�approximately 90%� of the encounters took place with good
sighting conditions, and encounters were distributed both
near shore and offshore throughout the study area, thus we
believe that there should be no strong bias for sighting larger
groups �12�. Individuals were identified photographically and
�or� visually based on distinctive acquired and congenital
characteristics of the dorsal fin and the saddle patch �a lightly
pigmented area at the base of the dorsal fin�. Only those
encounters where all members of a group were identified
were used in the analyses.*Corresponding author; prguima@ifi.unicamp.br
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A total of about 170 individually identified mammal-
eating killer whales were recorded throughout British Co-
lumbia and Washington state since the 1970s �12� and new
adult individuals are still occasionally documented. We re-
corded the social interactions of 58 individuals, but among
them, 15 are members of groups that spend most of their
time outside of our study area and during our sampling did
not directly interact with individuals of the population stud-
ied. Those individuals are treated as possible sources of fluc-
tuations in parameters used in our simulations of disease
spreading. Our sample contains the social interactions of 43
mammal-eating killer whales, representing approximately
25% of the total identified population. Ideally, all individuals
and social interactions in a network should be recorded. We
assume that the sampled network is a good approximation of
the real network �11�. Additional details of the data set and
sampling methods have been previously presented �12�.

KILLER WHALE SOCIAL NETWORK

Mammal-eating killer whales are one of the reproduc-
tively isolated forms of killer whales �Orcinus orca� that live
along the Pacific coast of North America �12,14�. In the
killer whale social network, individuals are represented by
nodes and two individuals are connected by a link if they
were recorded at least once in the same group, a “group”
being defined as all whales acting in a coordinated manner
�e.g., all traveling in the same direction at the same speed,
often surfacing within 5–10 s of each other� and within vi-
sual range of the observers �17�. To characterize network
topology, we described basic structural aspects of killer
whale social network11 �11,18�, including degree �number of
links per node�, average path length �the average number of
links between two individuals�, and the node’s clustering co-
efficient Ci, defined as Ci=2Ei /ki�ki−1�, in which the k is the
number of links that individual i have, k�k−1� /2 is the maxi-
mum number of links between the individuals that are linked
to individual i �the neighbors of individual i�, and E is the
number of links between the neighbors of individual i actu-
ally recorded. Therefore, Ci varies from zero if the individual
is not part of a cohesive group to one if the individual is part
of a highly cohesive group.

In this form of killer whale, groups are usually small,
containing an average of four individuals �17�. Some indi-
viduals are often observed together, such as adult females
and their first-born males �12,19�. However, males and fe-
males without offspring temporarily associate with different
groups �12,19�, and groups often aggregate to hunt large ma-
rine mammals and perform social activities �17�, leading to a
complex social organization. To describe this variation in the
strength of social interactions, we use the amount of time
two individuals are observed together in a group. We quan-
tify the temporal stability of the social interaction using the
half-weight association index �20,21�, defined as wij
=2rij / �ri+rj�, in which wij is the value of half-weight asso-
ciation for killer whales i and j, rij is the number of times
that killer whales i and j were recorded together, and ri and rj
are the number of times that killer whale i and j were
sampled, respectively. Therefore, this index scales from 0

�two individuals never recorded together� to 1 �two individu-
als always recorded together�. Although this index may be
affected by sampling, we believe that long-term duration of
fieldwork �ten years� allows for an adequate characterization
of disease spreading on the killer whale social network.

Disease simulations

We model the dynamics of disease spreading in the killer
whale network using the susceptible-infected �SI� model
�22�, and include a factor f representing the fraction of indi-
viduals that is naturally nonsusceptible to the disease. One
can also think of this problem as a site-bond percolation
problem �23–25�, where site dilution q relates to the fraction
f of nonsusceptible individuals and bond dilution p to the
probability for not transmitting the disease to nearest neigh-
bors. Therefore, our simulations explore scenarios in which a
disease may affect only a small part of the population �f
→1� and others in which the entire population is vulnerable
�f →0�.

We start the spreading process from a single seed. For a
given fraction f of nonsusceptible individuals, we perform
extensive simulations as follows: at each time step, �1� dis-
ease spreads from an infected individual i to all healthy and
susceptible animals j that directly interact with it with prob-
ability p equal to the half-weight index of association wij; �2�
the individual i becomes noninfective, simulating death or
the end of the infective period. The simulation stops at the
time step tmax when all healthy and susceptible animals are
infected or the disease spread is over. We count the number
of individuals infected up to time tmax.

To understand the structural basis of the observed vulner-
ability, we perform similar sets of simulations in networks in
which �1� links were randomly distributed among individuals
�controlling for the effects of the observed distribution of
links among individuals�; �2� links were assumed to be
equivalent and the probability of a healthy and susceptible
animal be infected were 1/k, in which k is the number of
individuals that interact with the infected animal �controlling
for the effects of the interaction weight�; �3� assuming both
�1� and �2�, such as in classical epidemiological models
�6–8,26� and therefore controlling for both observed distri-
bution of links and interaction weight�.

RESULTS

The killer whale network has a core of 43 individuals,
resulting on a maximum possible number of n�n−1� /2
=903 links. We recorded L=253 links representing 28% of
all possible links, leading to an average of 12 links per indi-
vidual �k�=11.77±4.75 �mean � standard deviation�. The
minimum number of links recorded for an individual was k
=4, whereas the two more connected individuals interact
with more than 50% of individuals �k=23�. The probability
that a random network with the same number of individuals
and links as that of the killer whale network has at least an
individual with 23 links is very small ��10−3, predicted us-
ing binomial distribution with parameters n and 2L /n�n−1��.
Therefore, random links among individuals did not repro-
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duce the existence of highly connected individuals as ob-
served in a killer whale network. The observed interactions
usually had, on average, an intermediary weight �w̄ij

=0.40±0.39�, but 17 pairs of individuals show maximum
weight �w=1�, indicating long-term interaction between in-
dividuals. On average 2 links separate two randomly selected
individuals, indicating that there is a small path p connecting
any pair of individuals �p=2.06±0.85�. In fact, the largest
recorded path between two individuals was 4 links. The av-
erage clustering coefficient of the killer whale network, �C�
=0.32±0.07, was not different from expected for a random
network with the same number of nodes and links �CR�
=2L /n�n−1�=0.28. However, this is a result of the masquer-
ading effect of five individuals that show very small cluster-
ing ��Ci�=0.17�. The majority of individuals �32 individuals,
88.3%� are part of cohesive groups �Ci�CR�, whereas in a
random network, we should expect that 50% of the individu-
als will show �Ci�CR�. The probability that a random net-
work with the same number of individuals and links as that
of the killer whale network has at least 32 individuals with
Ci�CR is very small ��10−6, predicted using binomial dis-
tribution with parameters n and 0.5�. Therefore, the killer
whale network shows small-world properties, combining
small path length and high clustering �18�.

We found that the killer whale social network �Fig. 1�a��
showed a strong potential for the emergence disease out-
breaks. In simulations assuming that all individuals are sus-
ceptible to the simulated diseases, up to 90% of individuals
were infected �Fig. 1�b��. The fraction of individuals infected
is higher than 50% even if the 20% of individuals are im-
mune to the disease �Fig. 1�b��. The strong vulnerability ob-
served in real networks was higher than observed in disease
simulations performed in the three network models, espe-
cially in the models in which interactions are equivalent �Fig.
1�b��. Thus, our results support the relevance of the interplay
between topology and dynamics of social interaction for the
spreading of infectious diseases in the killer whale commu-
nity.

DISCUSSION

Our study describes for the first time the vulnerability of
an animal social network to disease dynamics; we show that
the population of mammal-eating killer whales analyzed here
is vulnerable to disease outbreaks. Our results suggest that a
large fraction of the killer whale population studied may be
affected by a disease spreading through the social interac-
tions between individuals. The failure of theoretical networks
in which links are equivalent and/or distributed randomly
among individuals to lead to similar patterns of disease dy-
namics suggests that the observed vulnerability is a conse-
quence of the combined effects of both the topology �i.e., the
distribution� and the interaction strength of social links in
killer whales. Therefore, even for small populations as stud-
ied here, classical epidemiological models that assume that
two randomly selected individuals have a constant probabil-
ity of interacting and that all social interactions are equiva-
lent are not adequate �27�. In fact, we showed that the killer

whale social network has nonrandom structural patterns that
include the presence of some highly connected individuals,
small path length, and high clustering. In addition, previous
studies demonstrate that topology may contain information
of the buildup of small networks �28,29�. Therefore, we con-
tribute to the development of one of the central themes of
network theory, the study of small networks �9�, by showing
that aspects of network structure �topology and interaction
strength� affect dynamic processes such as diseases spread-
ing in very small networks.

In the context of the conservation of mammal-eating killer
whales, our study suggests that even endangered species in
which individuals live in seemingly small and isolated
groups, interacting with a few individuals, may be threatened

(a)(a)(a)(a)

(b)(b)(b)(b)

FIG. 1. �Color online� The structure and vulnerability of the
social network of mammal-eating killer whales. �a� The social net-
work in which the width of links is proportional to the weight or
strength of social interaction �wij�, quantified using the half-weight
index of association. �b� The average proportion of infected indi-
viduals after simulation of disease spreading �n=2150 simulations,
50 replicates assuming that a given individual is the first infected
individual�. Simulations were performed using different fractions of
nonsusceptible individuals and four different scenarios: �1� the real
weighted social network, �2� the network in which interactions are
randomized among individuals �preserving the weight of interac-
tions�, �3� the network in which all links have the same weight
�preserving the topology�, and �4� a random network assuming that
all links have the same weight �as in classical epidemiological mod-
els�. �See text for further details.�
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to disease outbreaks that may affect almost the entire popu-
lation. Although there is no available data to test our predic-
tions, there is �1� a wide variety of pathogens that attack
killer whales �16�, �2� the population shows high levels of
contamination by PCBs, increasing the vulnerability of indi-
viduals �15�, and �3� the population of other top predators
were locally or globally extinct due to pathogens �1,4�. It is
important to note that in natural conditions the transmission
of disease is probably compensated by the benefits derived
from social interactions, such as hunting efficiency �17� and
food sharing �30�. However, the same may not be true in
reduced populations in which the immunity of individuals is
already challenged by contaminant loads �15�, or facing re-
cently introduced pathogens �1�.

The observed deviation between the predictions of classi-
cal epidemiological models and our simulations reinforce the
importance of topology for dynamics within complex net-
works �11�. Previous studies focusing on the spread of dis-
ease in human social networks propose that biased policies
toward certain groups of individuals may be more efficient to
control disease outbreaks �31–33�. In mammal-eating killer
whales, our results suggest that individuals that show strong
interactions with a number of individuals are likely to be the
most important to the observed epizootic dynamics. Thus,
special attention should be devoted to mature females, since

they are likely to associate with a number of individuals and
establish long-term interactions with their offspring, even af-
ter the individuals disperse from the original group �12�.
These strategies should be associated with the identification
of potentially dangerous pathogens �16� and to the continu-
ous monitoring of health conditions of individuals in order to
detect epidemics at early stages.

We emphasize that the approach described here may help
to provide new insight into the vulnerability of other social
mammals. Because of the importance of top predators such
as mammal-eating killer whales to the long-term mainte-
nance of ecological communities �13,34,35�, we suggest that
future studies should focus social, endangered top predators
that are likely to be threatened by epizootics, such as lions
�Panthera leo�, African wild dogs �Lycaon pictus�, and hy-
enas �Crocuta crocuta� �36�.
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